On Making U2F Protocol Leakage-Resilient via Re-keying
نویسندگان
چکیده
The Universal 2nd Factor (U2F) protocol is an open authentication standard to strengthen the two-factor authentication process. It augments the existing password based infrastructure by using a specialized USB, termed as the U2F authenticator, as the 2nd factor. The U2F authenticator is assigned two fixed keys at the time of manufacture, namely the device secret key and the attestation private key. These secret keys are later used by the U2F authenticator during the Registration phase to encrypt and digitally sign data that will help in proper validation of the user and the web server. However, the use of fixed keys for the above processing leaks information through side channel about both the secrets. In this work we show why the U2F protocol is not secure against side channel attacks (SCA). We then present a countermeasure for the SCA based on re-keying technique to prevent the repeated use of the device secret key for encryption and signing. We also recommend a modification in the existing U2F protocol to minimise the effect of signing with the fixed attestation private key. Incorporating our proposed countermeasure and recommended modification, we then present a new variant of the U2F protocol that has improved security guarantees. We also briefly explain how the side channel attacks on the U2F protocol and the corresponding proposed countermeasures are similarly applicable to Universal Authentication Framework (UAF) protocol.
منابع مشابه
Leakage-Resilient Symmetric Encryption via Re-keying
In the paper, we study whether it is possible to construct an efficient leakage-resilient symmetric scheme using the AES block cipher. We aim at bridging the gap between the theoretical leakage-resilient symmetric primitives used to build encryption schemes and the practical schemes that do not have any security proof against side-channel adversaries. Our goal is to construct an as efficient as...
متن کاملTowards Sound Fresh Re-keying with Hard (Physical) Learning Problems
Most leakage-resilient cryptographic constructions aim at limiting the information adversaries can obtain about secret keys. In the case of asymmetric algorithms, this is usually obtained by secret sharing (aka masking) the key, which is made easy by their algebraic properties. In the case of symmetric algorithms, it is rather key evolution that is exploited. While more efficient, the scope of ...
متن کاملNew Approach to Practical Leakage-Resilient Public-Key Cryptography
We present a new approach to construct several leakage-resilient cryptographic primitives, including leakage-resilient public-key encryption (PKE) schemes, authenticated key exchange (AKE) protocols and low-latency key exchange (LLKE) protocols. To this end, we introduce a new primitive called leakage-resilient non-interactive key exchange (LR-NIKE) protocol. We introduce a generic security mod...
متن کاملLeakage-Resilient Pseudorandom Functions and Side-Channel Attacks on Feistel Networks
A cryptographic primitive is leakage-resilient, if it remains secure even if an adversary can learn a bounded amount of arbitrary information about the computation with every invocation. As a consequence, the physical implementation of a leakage-resilient primitive is secure against every side-channel as long as the amount of information leaked per invocation is bounded. In this paper we prove ...
متن کاملGroup Re - keying Protocol Based on Modular Polynomial Arithmetic Over Galois Field
Problem statement: In this study we propose a group re-keying protocol based on modular polynomial arithmetic over Galois Field GF(2). Common secure group communications requires encryption/decryption for group re-keying process, especially when a group member is leaving the group. Approach: This study proposes secret keys multiplication protocol based on modular polynomial arithmetic (SKMP), w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017